エネルギーを効率的に利用し、 環境負荷の少ない製品を精製します。

中東などから輸送された原油は、製油所で、ガ ソリン、灯油、軽油などの石油製品に精製されます。

製油所では、精製を行うために、加熱炉やボイ ラーなどの設備を設置しています。これらの設備 では、精製に必要なエネルギーを得るために、燃 料油や、精製工程で発生する石油ガスを燃焼さ せる際、CO2、SOx(硫黄酸化物)、NOx(窒素酸 化物 などを排出します。当社では、エネルギーを 効率的に利用することにより、CO2の排出量低減 を図るとともに、SOx、NOxなどの排出量低減*1に も努めています。また、精製工程で使用する水の削 減や、排水の適切な処理、産業廃棄物の削減*2 などにも取り組んでいます。

精製工程のみならず、高度な精製を行うことに より、使用時の環境負荷も低減し、ライフサイクル 全体で環境負荷の低減を目指しています*3。

石油ガス留分

石油ガス

アスファルトなど

を利用して蒸気を発生させ、エネルギーを有効 利用することができます。当社では、千葉製油所 (39,500kW),四日市製油所(17,500kW),堺製 油所(17,000kW)で稼動しています。

また既存設備の改善や、運転をきめ細かくコン トロールすることによって、さらにCO2の排出を抑 えることができます。当社では、各製油所におけ る省エネ活動の水平展開を推進しているほか、 2001年度は、ナフサ脱硫装置オフガスの有効活 用(千葉製油所)、常圧蒸留装置の熱交換器改 造による加熱炉の負荷低減(四日市製油所)回 転機の効率向上による動力削減(坂出製油所)

などを実施しました。今 後は、四日市製油所の第 2コージェネレーション設 備の導入などの設備投 資を行っていきます。

千葉製油所の -ジェネレーション設備

加熱炉 ガソリン留分 ガソリン・ ナフサなど 原油 🔷 30~180 = 灯油留分 170~250 ジェット燃料 軽油留分 240~350 軽油

石油蒸気

350 以上

常圧蒸留

石油精製の方法

*1 19~20ページを参照。

*3 22、27~28ページを参照。

排ガス中に含まれるNOxを除去す

る装置。アンモニアと触媒を利用

して還元する方式や、吸収溶液に

常圧蒸留装置の仕組み

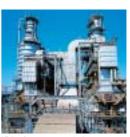
吸収させる方式があります。

*2 21ページを参照。

*4 排煙脱硝装置

- 1. 原油、ガソリン、灯油、軽油、重油などを、 それぞれの目標成分に応じた沸点範囲の 留分に分ける
- □> 泰留(常圧泰留装置、減圧泰留装置など)
- 2. 分けた各留分から硫苗、窒素、金属分を除去し きれいにする。
- ⇒ 脱硫(水素化脱硫装置)
- 3. きれいにした留分を加工し、 付加価値を高める。
 - ⇒ 改質(接触改質装置) □ 分解(流動接触分解装置)
- 4. これらの留分(基材)を混合し 市場のニーズに合わせて製品化する。
 - 二> 調合(ガソリン調合装置、重油調合装置、 潤滑油調合装置)

温暖化防止のために エネルギーの効率的利用を推進


重油留分

当社は1997年、本社及び4製油所で「省エネ タスクチーム」を編成し、省エネのために有効と 考えられる施策を検討・実施してきました。

これまでに導入した主な施策として、コージェ ネレーション設備の導入があげられます。コージェ ネレーション設備は、製油所内で発電を行うため、 送電ロスが少なく、発電と同時に発生する排熱 大気汚染防止のために排煙脱硫装置、 ベーパー回収装置などを導入

当社では、製油所の加熱炉やボイラーなどの 燃料として、硫黄分や窒素分の少ない燃料を使 用し、SOxやNOxの排出量低減に努めています。 さらに、設備面での対応として、燃焼時に空気中 の窒素と酸素が反応して生成されるサーマル NOxを削減するための低NOxバーナーや、発生

したSOxやNOxを排煙 中から取り除くための 排煙脱硫装置や排煙 脱硝装置*4を導入して います。また、排ガス中 の細かい粒子は、電気 集じん機によって除去 排煙脱硝装置

排煙中のNOxを除去する

しています。これらの対応により、SOxやNOxの大 気への排出は、4製油所とも地域の規制値をクリ アしています*1。

また、ガソリンをタンク ローリーなどで出荷す る際に、炭化水素ベー パー*2の大気への排出 を防止するために、ベー パー回収装置を導入し ています。

ベーパーの大気への排出 を防止するベーパー回収装置

水資源の有効利用と 水質汚濁防止のために

製油所の精製工程では、海水や工業用水が 使用されます。精製工程において、洗浄などに使 用した後のプロセス排水*3については、油水分 離装置で油を取り除き、活性汚泥処理など適切 な処理を行い、水質汚濁防止に努めています。ま

た、工業用水を 冷却水として使 用する場合は、 循環再利用す ることによって 水資源の節約

を図っています。排水処理装置

廃棄物削減のために 再利用・再資源化・減量化を推進

製油所から発生する産業廃棄物で、大きな割 合を占めているのが、精製工程で発生する廃触 媒と、排水処理工程で発生する余剰汚泥です。

使用済み触媒については、再生処理によって 触媒として再使用しているほか、廃触媒中の金 属回収や、セメント原料としての再資源化を行っ ています。これにより、廃棄物の削減と新規の触 媒購入コストの削減を図っています。

余剰汚泥については、脱水後、ダイオキシン規

制に適合した焼却炉で焼却・減量化後に、適正 処分しています。

安全対策と緊急時対応

製油所では多量の可燃物を扱っているため、 所長を委員長とする安全衛生委員会を組織し、 入出荷から設備の工事・運転・管理に至るまで、 すべての業務における安全対策の徹底を図ると ともに、年次の安全目標管理を通じて、組織的・ 継続的な安全管理を行っています。これに加え 2001年1月からは、4製油所で保安管理強化活動 を展開し、自主保安の一層の強化に努めています。

事故や災害を予防するためには、異常の早期 発見が重要です。製油所には火災報知器やガ ス検知器などの異常監視システムを配備すると ともに、綿密なパトロールを行い、異常の早期発 見に努めています。

製油所内の火災など に備えて、大型化学消防 車を配備するとともに、自 衛消防隊を編成し、総合 防災訓練や通報訓練な どを実施しています。さらに、 近隣のコンビナート企業と の共同防災体制の構築や、 公設機関との合同訓練な総合防災訓練

ど、地域防災のための連携強化にも努めています。

また、入出荷作業時の石油流出事故に備え、 桟橋にはオイルフェンス*4を設置し、その利用を 徹底しています。

さらに、大規模石油流 出による大規模海洋汚 染への対応として、石油

連盟の海水油濁処理協 オイルフェンス(格納時)

力機構に参加し、当社四日市製油所に資機材 基地の設置、資機材の維持管理を行うことにより、 相互支援体制を構築しています。

*145~50ページを参照。

*2 炭化水素ベーパー

軽質の炭化水素が気化したもの。

*3プロセス排水

精製装置から排出される油を含ん だ排水のこと。

*4 オイルフェンス

海上に油が拡散するのを防止する ためのフェンス。桟橋に設置され ており、タグボートなどで海上に張